

ии твердого тела РАН Уральский федеральный

РЕНТГЕНОВСКАЯ ФОТОЭЛЕКТРОННАЯ ДИФРАКЦИЯ И ГОЛОГРАФИЯ

ПОВЕРХНОСТЕЙ СЛОИСТЫХ КРИСТАЛЛОВ ХАЛЬКОГЕНИДОВ

ТИТАНА И ВИСМУТА

Огородников Илья Игоревич

01.04.07 – физика конденсированного состояния

Работа выполнена в лаборатории квантовой химии и спектроскопии Института химии твердого тела УрО РАН

Научный руководитель: д.х.н. Кузнецов М.В.

- химический состав поверхности;
- атомная структура поверхности и поверхностных слоев;
- химическая связь между атомами на поверхности;
- электронная структура;
- физико-химические свойства.

АКТУАЛЬНОСТЬ. МЕТОДЫ АНАЛИЗА ПОВЕРХНОСТИ

фотоэлектронная спектроскопия (XPS, AR PES)

200 204 208 E_{ce}, эB

химический состав, электронная структура, химическая связь фотоэлектронная дифракция и голография (XPD, photoelectron holography)

Структура поверхностных слоев

STM - микроскопия

топология, атомная структура поверхности

РЕНТГЕНОВСКАЯ ФОТОЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ И ДИФРАКЦИЯ

РЕНТГЕНОВСКАЯ ФОТОЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ И ДИФРАКЦИЯ

Рассеиватель

информация Вся об структурная анализируемом кластере заключена В слагаемых, содержащих фазовые множители тика $exp\{ik(r_i - r_k)\}$ или $exp(ikr_i)$, определяются взаимным которые расположением атомов эмиттера И рассеивателей.

$$F_{0} = (\widehat{\epsilon} \cdot \widehat{k}) \exp(-L_{0}/2\Lambda_{e}),$$

$$F_{j} = (\widehat{\epsilon} \cdot \widehat{r}_{j}/r_{j}) |f_{j}(\theta_{j})| W_{j} \exp(-L_{j}/2\Lambda_{e}) \exp[i\varphi_{j}(\theta_{j})] \exp[ikr_{j}].$$

$$F_{j}(k) \propto |F_{0}|^{2} + \sum_{j} \left[F_{0}^{*}F_{j} \exp\{-ik \cdot r_{j}\} + F_{0}F_{j}^{*} \exp\{ik \cdot r_{j}\}\right] + \sum_{j} \sum_{k} \left[F_{j}^{*}F_{k} \exp\{ik \cdot (r_{j} - r_{k})\} + F_{j}F_{k}^{*} \exp\{ik \cdot (r_{k} - r_{j})\}\right].$$

И.И. Огородников и др. Рентгеновская фотоэлектронная дифракция и фотоэлектронная голография как методы исследования локальной атомной структуры поверхности твердых тел. Обзор. // *Успехи химии*, Т. 83, С. 13-37 (2014).

придумывать модельный кластер, описывающий поверхность. Для сложных систем это очень сложно сделать, что ограничивает возможности метода.

Cu(001)

3.

2

1

0

-1

Фотоэлектронная голография СЕГОДНЯ:

- Необходим синхротронный источник рентгеновского излучения;
- Реализован только на поверхностях чистых металлов.

http://ftp.aip.org/epaps/phys_rev_lett/E-PRLTAO-88-029206/

эмиттер

2

1

0~

Таким образом, мы имеем два подхода для структурного анализа на основе данных фотоэлектронной дифракции и оба способа имеют свои ограничения.

Вопрос – можно ли объединить эти два подхода, если исходная точка отчета у них одна – экспериментальная дифракционная картина.

эмиттер

Цель работы – развитие методов РЕНТГЕНОВСКОЙ ФОТОЭЛЕКТРОННОЙ ДИФРАКЦИИ и ФОТОЭЛЕКТРОННОЙ ГОЛОГРАФИИ для анализа атомной структуры поверхности и исследование структуры поверхностей (111) слоистых кристаллов халькогенидов TiX₂ (X:Se,S) и Bi₂X₃ (X:Se,Te).

Решались <u>следующие задачи</u>:

- Проведение экспериментов и теоретических расчетов фотоэлектронной дифракции и голографии.
- Разработка программного продукта "XPDProcessor" для обработки экспериментальных и расчетных данных по фотоэлектронной дифракции и голографии и структурного анализа поверхности
- Изучение релаксационных эффектов на поверхности 17-TiSe₂ методами CTM, фотоэлектронной дифракции и голографии.
- РФД- и РФГ- анализ атомной структуры поверхностей топологических изоляторов (111) Bi₂X₃ (X:Se,Te) и Bi₂Se₃ (In10%), а также структуры данных поверхностей после адсорбции монослоев железа и кобальта.

СТРУКТУРА ДИССЕРТАЦИОННОЙ РАБОТЫ

8

9

ПОВЕРХНОСТЬ 17-ТіSe2: СТМ- и РФД- ЭКСПЕРИМЕНТ И МОДЕЛЬНЫЕ РАСЧЕТЫ

ARPES-исследования полуметалл или полупроводник?

M.V. Kuznetsov, I.I. Ogorodnikov, A.S. Vorokh, A.S. Rasinkin, A.N. Titov. Characterization of 17-TiSe₂ surface by means of STM and XPD experiments and model calculations. // *Surf. Sci*., V. 606, № 23-24, P. 1760-1770 (2012).

РЕНТГЕНОВСКАЯ ФОТОЭЛЕКТРОННАЯ ДИФРАКЦИЯ ПОВЕРХНОСТИ 17-TiSe,

ФОТОЭЛЕКТРОННАЯ ГОЛОГРАФИЯ. АЛГОРИТМ SPEA-MEM

Реальное пространство

ФОТОЭЛЕКТРОННАЯ ГОЛОГРАФИЯ ПОВЕРХНОСТИ 17-TiSe₂

Ті (эксперимент)

ФОТОЭЛЕКТРОННАЯ ГОЛОГРАФИЯ ПОВЕРХНОСТИ 17-TiSe₂

ФОТОЭЛЕКТРОННАЯ ГОЛОГРАФИЯ И ДИФРАКЦИЯ ПОВЕРХНОСТИ 17-TiSe₂

Реконструкция структуры TiSe₂, охватывающей 128 атомов трёх поверхностных слэбов Se-Ti-Se

РЕКОНСТРУКЦИЯ СТРУКТУРЫ ПОВЕРХНОСТИ 1*T*-TiSe₂

18

МОДЕЛИРОВАНИЕ ДЕФЕКТОВ НА ПОВЕРХНОСТИ 1 7-TiSe₂

МОДЕЛИРОВАНИЕ ДЕФЕКТОВ НА ПОВЕРХНОСТИ 1<u>7-TiSe</u>2

Окружение атома Ті изменено с октаэдрического на призматическое: 1T-TiSe₂ \rightarrow 2H-TiSe₂

Поверхность 1*T*-TiSe₂ СТМ-изображение

Параболический кластер для **EDAC**-моделирования РФД

1.72°

РФД-моделирование изгиба поверхности 1*T*-TiSe₂

5.16°

3.44°

Модель

Впервые реализована комбинация методов фотоэлектронной голографии и дифракции для поверхности сложного объекта и сделано это на лабораторном спектрометре по одной дифракционной картине для селена и титана

Линия **BESSY II** со специализированным анализатором для изучения фотоэлектронной дифракции электронов

- Высокая интенсивность рентгеновского излучения;
- Поляризованное излучение;
- Возможность варьировать энергию падающих *hv* квантов и, следовательно, кинетическую энергию фотоэлектронов

ФОТОЭЛЕКТРОННАЯ ДИФРАКЦИЯ И ГОЛОГРАФИЯ ПОВЕРХНОСТЕЙ (111) Bi₂Te₃ И Bi₂Se₃

ФОТОЭЛЕКТРОННАЯ ДИФРАКЦИЯ И ГОЛОГРАФИЯ ПОВЕРХНОСТЕЙ (111) Bi₂Te₃ И Bi₂Se₃

ФОТОЭЛЕКТРОННАЯ ДИФРАКЦИЯ И ГОЛОГРАФИЯ ПОВЕРХНОСТЕЙ (111) Bi₂Te₃ И Bi₂Se₃

(111) Bi₂Te₃

	Bulk	LEED film	XPD Bi 4 <i>f</i> crystal	XPD Te 4d crystal	XPH Bi 4 <i>f</i> crystal	XPH Te 4d crystal	DFT
d_1 (Å)	1.743	1.68 ± 0.02	1.69 ± 0.02	1.71 ± 0.02	1.8 ± 0.1	1.70 ± 0.05	1.72
d_2 (Å)	2.033	2.03 ± 0.02	2.05 ± 0.02	2.03 ± 0.02	2.00 ± 0.05	2.00 ± 0.05	2.06
d ₃ (Å)	2.033	2.02 ± 0.02	-	-	2.00 ± 0.05	2.00 ± 0.05	2.04
d_4 (Å)	1.743	1.71 ± 0.03	-	-	-	1.70 ± 0.05	1.74
vdW (Å)	2.612	2.57 ± 0.02	2.59 ± 0.02	2.59 ± 0.02	-	2.60 ± 0.05	-

(111) Bi₂Se₃

	Bulk	LEED crystal	SXRD crystal	XPD Se 3d crystal	XPH Bi 4 <i>f</i> crystal	XPH Se 3 <i>d</i> crystal	XPH Bi 4 <i>f</i> film	DFT
d_1 (Å)	1.550	1.56 ± 0.03	1.51 ± 0.05	1.62 ± 0.02	1.60 ± 0.05	1.60 ± 0.05	1.60 ± 0.05	1.56
d_2 (A)	1.931	1.96 ± 0.03	1.94 ± 0.06	1.91 ± 0.02	1.8 ± 0.1	1.90 ± 0.05	2.00 ± 0.05	1.96
d ₃ (A)	1.931	2.01 ± 0.04	1.91 ± 0.05	-	2.00 ± 0.05	2.00 ± 0.05	2.00 ± 0.05	1.94
d_4 (A)	1.550	1.53 ± 0.05	1.72 ± 0.04	-	-	1.8 ± 0.1	1.70 ± 0.05	1.58
vdW (A)	2.578	2.51 ± 0.08	2.50 ± 0.06	-	-	2.50 ± 0.05	2.20 ± 0.05	-

АДСОРБЦИЯ ЖЕЛЕЗА И КОБАЛЬТА НА (111) Bi_2Te_3 И Bi_2Se_3

STM-микроскопия

XPS-спектроскопия

0.2 *ML* Fe / (111) Bi₂Te₃

0.4 *ML* Fe / (111) Bi₂Te₃

При адсорбции Fe и Co трансформации подвергается весь верхний пятислойный структурный блок Bi₂X₃ (X:Se,Te).

АДСОРБЦИЯ ЖЕЛЕЗА И КОБАЛЬТА НА (111) Bi_2Te_3 И Bi_2Se_3

	B	i4f	Те	Fe3p	
	302 eV	742 eV	419 eV	859 eV	167 eV
(111) Bi ₂ Te ₃	0000			·	
1.2 ML Fe (111) Bi ₂ Te ₃	53	Service Servic	-	······································	
2.2 ML Fe (111)Bi ₂ Te ₃	52				AND NO.

РФД+РФГ-ЭКСПЕРИМЕНТ НА ПОВЕРХНОСТИ Fe/(111)Вi₂Te₃

29

Реконструкция окружения железа

Реконструкция структуры поверхности **2.2***ML* **Fe/(111) Bi**₂**Te**₃ по данным фотоэлектронной голографии при эмиссии фотоэлектрона из состояния **Fe 3***p* (кинетическая энергия 167эВ).

АДСОРБЦИЯ ЖЕЛЕЗА И КОБАЛЬТА НА (111) Bi_2Te_3 И Bi_2Se_3

Модель структуры 2.2*ML* Fe/(111) Ві₂Те₃ по данным рентгеновской фотоэлектронной голографии и квантовохимических расчетов.

слева: эксперимент - реконструкция ближайшего окружения атомов-эмиттеров железа, справа: теория – квантовохимические расчеты с оптимизацией структуры.

ФОТОЭЛЕКТРОННАЯ ГОЛОГРАФИЯ С РАЗРЕШЕНИЕМ ХИМИЧЕСКИХ СОСТОЯНИЙ ЭЛЕМЕНТОВ

Bi³, Bi⁴ и т.д. – атомы висмута низлежащих слоев.

На основе модели рассчитаны теоретические РФД Bi4f отдельно для атомов Bi^{surface}:Bi¹+Bi² и Bi^{bulk}:Bi³+Bi⁴+...

ЭКСПЕРИМЕНТ

Сопоставление реконструкции,

построенной на основе РФГ Bi4*f* (Bi¹+Bi²) для поверхности Fe/(111)Bi₂Te₃ с атомной моделью, оформленной на данных по фотоэмиссии с состояний железа Fe3*p*.

Межслоевые расстояния и параметр *а* для поверхности Fe/Bi₂Te₃(111) (Å) по данным фотоэлектронной голографии Bi4*f*.

Полученные данные сопоставляются с результатами голографии и дифракции Fe3p и квантово-химических расчетов.

	ф	Г			
Параметр	Bi4f	Fe3p	РФД Fe3p	КХ-расчеты	
d _{1a}	1.4	1.60	1.62	1.29	
d _{1b}	0.7	0.40	0.34	0.79	
d ₂	2.2	2.00	1.96	2.06	
d _{3a}	1.0	0.90	1.00	0.97	
d _{3b}	0.7	-	1.00	1.19	
d ₄		-	1.14	1.87	
D		-	2.86	2.67	
а	4.4	4.40	4.34	4.30	

В рамках диссертационной работы выполнен комплекс экспериментальных и теоретических исследований, направленных на развитие методов **РЕНТГЕНОВСКОЙ ФОТОЭЛЕКТРОННОЙ ДИФРАКЦИИ И ГОЛОГРАФИИ (РФД+РФГ)** и изучение структуры поверхностей (111) слоистых халкогенидов висмута (Bi₂Te₃, Bi₂Se₃, Fe,Co/Bi₂Te₃, Bi₂Se₃(In,10%) и поверхности (001) дихалькогенида титана TiSe₂.

Разработан оригинальный программный продукт - "XPDProcessor" для анализа данных фотоэлектронной дифракции и голографии.

В результате проведенных исследований сделаны следующие выводы:

1. Рентгеновская фотоэлектронная дифракция и голография позволяют реконструировать атомную структуру поверхностных слоев монокристаллических материалов на глубину ~ 20 Å и оценивать межатомные расстояния с точностью ~ 0.05 Å; РФД и РФГ обладают селективностью по отношению к сорту атомов и, в принципе, позволяют изучать ближайшее окружение каждого из атомов, входящего в состав поверхности соединения. Фотоэлектронная голография является методом анализа и 3D-визуализации атомной структуры поверхности, однако в случае сложных систем перестает быть прямым методом, поскольку требует модельных расчетов для исключения артифактов компьютерного РФГ-эксперимента и интерпретации максимумов атомной плотности.

- 2. Эксперименты и модельные расчеты фотоэлектронной дифракции и голографии поверхности 17-TiSe₂ (001) свидетельствуют о значительной структурной деформации верхних слоев данного кристалла. Искажение структуры может быть связано с релаксационными эффектами, дефектами на поверхности и в приповерхностных слоях, отклонением геометрии поверхности от плоскости (001) кристалла, например, за счет отслаивания верхнего Se-Ti-Se структурного блока от матрицы кристалла.
- 3. Фотоэлектронная дифракция и голография поверхностей (111) Вi₂Te₃ и (111) Bi₂Se₃ показывает, что последовательность упаковки поверхностных слоев халькогенидов соответствует таковой в объеме, т.е. на поверхности расположен пятислойный структурный блок с атомами халькогена (Se,Te) в первом слое. Гипотеза образования бислоев висмута на поверхности (111) Bi₂Se₃ при сколе в вакууме неверна. Релаксация поверхностных слоев (111) Bi₂Se₃ и (111) Bi₂Se₃ колеблется в пределах нескольких процентов, что укладывается в рамки точности метода.
- 4. Для системы Fe/Bi₂Te₃(111) установлено, что в результате адсорбции атомы железа частично проникает под поверхность и занимает межузельные позиции под первым и вторым слоями теллура. Для данных состояний железа впервые проведена 3D-реконструкция верхнего структурного блока Bi₂Te₃(111), модифицированного железом и предложена модель поверхностного интерфейса Fe/Bi₂Te₃(111).
- **5.** Впервые реализован метод Фотоэлектронной Голографии с разрешением химических состояний элементов на примере электронных спектров Bi4*f*-висмута системы Fe/Bi₂Te₃(111).

ИТОГ РАБОТЫ - МЕТОДОЛОГИЯ ЭКСПЕРИМЕНТА И ТЕОРЕТИЧЕСКИХ РАСЧЕТОВ

Постановка задач по теме диссертационной работы, написание программы "XPDProcessor", участие в проведении экспериментов, теоретические расчеты, интерпретация результатов и написание научных работ.

Руководство и участие в выполнении проектов РФФИ по теме диссертационной работы : **14-02-31716,** 13-03-96032, 11-03-00063, 10-03-96047.

По теме диссертационной работы опубликовано 5 статей в отечественных и международных журналах из списка ВАК:

- 1. **И.И. Огородников**, А.С. Ворох, М.В. Кузнецов, "Атомная структура поверхностного слоя 1*T*-TiSe₂ по данным фото- и оже-электронной голографии". // *Письма в ЖЭТФ*, 2012, Т. 95, № 7, С. 414-422.
- А.С. Разинкин, И.И. Огородников, А.Н. Титов, М.В. Кузнецов. "Структурные дефекты на поверхности 17-TiSe₂: эксперимент и модельные расчеты фотоэлектронной дифракции". // Известия РАН. Серия физическая, Т. 76, № 7, С. 943-946 (2012).
- 3. M.V. Kuznetsov, I.I. Ogorodnikov, A.S. Vorokh, A.S. Rasinkin, A.N. Titov. Characterization of 1*T*-TiSe₂ surface by means of STM and XPD experiments and model calculations. // *Surface Science.*, 606, № 23-24, P. 1760 (2012).
- 4. М.В. Кузнецов, **И.И. Огородников**, А.С. Ворох. Рентгеновская фотоэлектронная дифракция и фотоэлектронная голография как методы исследования локальной атомной структуры поверхности твердых тел. Обзор. // **Успехи химии**, Т. 83, С. 13-37 (2014).
- M.V. Kuznetsov, L.V. Yashina, J. Sánchez-Barriga, I.I. Ogorodnikov, A.S. Vorokh, A.A. Volykhov, R.J. Koch, V.S. Neudachina, M.E. Tamm, A.P. Sirotina, A.Yu. Varykhalov, G. Springholz, G. Bauer, J.D. Riley, O. Rader. Atomic structure of Bi₂Se₃ and Bi₂Te₃ (111) surfaces probed by photoelectron diffraction and holography. // *Phys. Rev. B*, V. 91, P. 085402 (2015).

- 1. Метод рентгеновской фотоэлектронной голографии (ФГ) как составная часть рентгеновской фотоэлектронной дифракции (РФД) является эффективным инструментом при анализе атомной структуры поверхности твердых тел. 3*D*-реконструкция методами ΦΓ и РФД атомной структуры поверхности монокристаллических материалов осуществляется на глубину ~ 20 Å с точностью определения межатомных расстояний лучше 0.05 Å.
- 2. РФД и ФГ эксперименты и модельные расчеты свидетельствуют о структурной деформации верхних слоев поверхности (001) 17-TiSe₂. Это связано с релаксационными эффектами на поверхности, структурными дефектами и отслаиванием верхнего Se-Ti-Se структурного блока от матрицы кристалла. Деформация решетки верхнего структурного слоя 17-TiX₂ (X: S, Se) в виде растяжения в базисной плоскости или сжатия вдоль нормали к поверхности приводит к снижению коэффициента *c*₀/*a*₀, что объясняет наблюдаемую ARPES энергетическую щель между Se(S)*p* и Ti3*d*-зонами.

- 3. Структурный анализ поверхностей (111) Ві₂Те₃ и (111) Ві₂Se₃ методами **фотоэлектронной дифракции и голографии** доказывает, что последовательность упаковки поверхностных слоев халькогенидов соответствует таковой в объеме, т.е. на поверхности расположен пятислойный структурный блок с атомами халькогена (Se, Te) в первом слое. Существующая гипотеза образования бислоев висмута на поверхности (111) Ві₂Se₃ при сколе в вакууме неверна. Релаксация поверхностных слоев (111) Ві₂Se₃ и (111) Ві₂Se₃ колеблется в пределах нескольких процентов, что укладывается в рамки точности метода.
- 4. Для системы $Bi_2Se_3(In10\%)$ методами РФД и ФГ подтверждено, что индий в решетке Bi_2Se_3 расположен на позициях висмута; межслоевые расстояния в первом структурном блоке слоистого халькогенида $Bi_2Se_3(In10\%)$ составляют: $d_1=1.60\pm0.05$ Å, $d_2=2.00\pm0.05$ Å, $d_3=2.00\pm0.05$ Å и $d_4=1.50\pm0.05$ Å, ширина первой ван-дер-Ваальсовой щели $vdW=2.40\pm0.05$ Å.
- 5. Методы фотоэлектронной дифракции и голографии доказывают, что в результате адсорбции Fe на поверхность (111) Bi₂Te₃ (в вакууме) часть атомов железа проникает под поверхность халькогенида висмута и занимает межузельные позиции под первым и вторым слоями теллура. Предложенная на основе РФД- и ФГ-данных модель поверхностного интерфейса Fe/(111)Bi₂Te₃ хорошо согласуется с результатами квантовохимических расчетов.